Tree Stem and Height Measurements using Terrestrial Laser Scanning and the RANSAC Algorithm

نویسندگان

  • Kenneth Olofsson
  • Johan Holmgren
  • Håkan Olsson
چکیده

Terrestrial laser scanning is a promising technique for automatic measurements of tree stems. The objectives of the study were (1) to develop and validate a new method for the detection, classification and measurements of tree stems and canopies using the Hough transformation and the RANSAC algorithm and (2) assess the influence of distance to the scanner on the measurement accuracy. Tree detection and stem diameter estimates were validated for 16 circular plots with 20 m radius. The three dominating tree species were Norway spruce (Picea abies L. Karst.), Scots pine (Pinus sylvestris L.) and birch (Betula spp.). The proportion of detected trees decreased as the distance to the scanner increased and followed the trend of decreasing visible area. Within 10 m from the scanner, the proportion of detected trees was 87% on average for the plots and the diameter at breast height was estimated with a relative root-mean-square-error (RMSE) of 14%. The most accurate diameter measurements were obtained for pine, which had a RMSE of 7% for all the full 20 m radius plots. The RANSAC algorithm reduced noise and made it possible to obtain reliable estimates.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Detection of some Tree Species from Terrestrial Laser Scanner Point Cloud Data Using Support-vector Machine and Nearest Neighborhood Algorithms

acquisition field reference data using conventional methods due to limited and time-consuming data from a single tree in recent years, to generate reference data for forest studies using terrestrial laser scanner data, aerial laser scanner data, radar and Optics has become commonplace, and complete, accurate 3D data from a single tree or reference trees can be recorded. The detection and identi...

متن کامل

3D Forest: An application for descriptions of three-dimensional forest structures using terrestrial LiDAR

Terrestrial laser scanning is a powerful technology for capturing the three-dimensional structure of forests with a high level of detail and accuracy. Over the last decade, many algorithms have been developed to extract various tree parameters from terrestrial laser scanning data. Here we present 3D Forest, an open-source non-platform-specific software application with an easy-to-use graphical ...

متن کامل

Automatic Estimation of Tree Position and Stem Diameter Using a Moving Terrestrial Laser Scanner

Airborne laser scanning is now widely used for forest inventories. An essential part of inventory is a collection of field reference data including measurements of tree stem diameter at breast height (DBH). Traditionally this is acquired through manual measurements. The recent development of terrestrial laser scanning (TLS) systems in terms of capacity and weight have made these systems attract...

متن کامل

Automatic and Self-Adaptive Stem Reconstruction in Landslide-Affected Forests

Terrestrial laser scanning (TLS) is a promising technique for plot-wise acquisition of geometric attributes of forests. However, there still exists a need for TLS applications in mountain forests where tree stems’ growing directions are not vertical. This paper presents a novel method to model tree stems precisely in an alpine landslide-affected forest using TLS. Tree stems are automatically de...

متن کامل

Automatic Segmentation of Building Facades Using Terrestrial Laser Data

There is an increasing interest of the scientific community in the generation of 3D facade models from terrestrial laser scanner (TLS) data. The segmentation of building facades is one of the essential tasks to be carried out in a 3D modelling process. Since in reality, majority of facade components are planar, the detection and segmentation of geometric elements like planes respond to the prev...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Remote Sensing

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2014